Nilai lim_(x→1)⁡ (x-1)/(√(x+3)-2)=⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Limit   ›  

Nilai \( \displaystyle \lim_{x \to 1} \ \frac{x-1}{\sqrt{x+3}-2} = \cdots \)

  1. 1/4
  2. 1/2
  3. 1
  4. 2
  5. 4

(SPMB 2007)

Pembahasan:

\begin{aligned} \lim_{x \to 1} \ \frac{x-1}{\sqrt{x+3}-2} &= \lim_{x \to 1} \ \frac{x-1}{\sqrt{x+3}-2} \times \frac{\sqrt{x+3}+2}{\sqrt{x+3}+2} \\[8pt] &= \lim_{x \to 1} \ \frac{(x-1)(\sqrt{x+3}+2)}{(x+3)-4} \\[8pt] &= \lim_{x \to 1} \ \frac{(x-1)(\sqrt{x+3}+2)}{x-1} \\[8pt] &= \lim_{x \to 1} \ (\sqrt{x+3}+2) \\[8pt] &= \sqrt{1+3}+2 = 4 \end{aligned}

Jawaban E.